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Abstract: In this paper, the spectrum of a parallel repairable system with warm standby is investigated. Firstly, we
formulate the problem into a suitable Banach space. Then we carry out a detailed spectral analysis of the system
operator. Based on the spectral analysis and C0 semigroup theory, we prove the existence of positive solution
and finite expansion of the solution corresponding to its eigenvector. As a consequence we get that its dynamic
solutions converges exponentially to the stead-state solution. Finally, we obtain the finite expansion of solution
and derive some reliability indices of the system.
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1 Introduction
With the development of the modern technology and
extensive use of electronic products, the reliability
problem of the reparable systems has been a hot topic.
It is well-known that reliability of a system is an im-
portant concept in engineering, it takes an essential
rule in the plan, design and operation strategy of var-
ious complex systems. In order to increase the reli-
ability of a system, a repair unit is necessary for in-
creasing the performance and reducing the downtime
or the maintenance. Therefore, repairable system is
not only a kind of important system discussed in relia-
bility theory but also one of the main objects studied in
reliability mathematics. Many authors have worked in
this field, including system modeling (see, [1][2][3])
and model analysis (see, [4][5][6][7][8]) and the ref-
erences therein.

Different from the early study of reparable sys-
tem, in which the key point emphases the reliabil-
ity indices involving availability of the system, which
usually were obtained by steady state, the issue is to
obtain the time-dependent solution of the system gov-
ern by the partial differential equations. This is be-
cause we cannot wait for a long time in some cases, for
example, the cases of [9] and [10]. The change of key
point of the issue requires us to analyze completely
the system including spectrum of the system opera-
tor and finite expansion of solution. From application
point of view, the time we can observe the steady state
of the system becomes obviously an important index,
which is especial important in the investigation of hu-

man health problem or recovery. Therefore our task is
mainly to solve the following questions:

(1) the system under consideration has a unique
nonnegative time-dependent solution;

(2) approximate of solution;
(3) the system has a steady state, and the dynamic

solution of the system converges to the steady state.
Let us recall the observation time issue. Let S be

a reparable system and P (t) be the state vector, which
describe the probability in the various states. Suppose
that the system has a steady state P̂0. If there is a time
τ0 such that ∥P (t) − P̂0∥∥ ≤ 0.25, t ≥ τ0, then it is
said that the steady state of S is observable at time τ0.
Obviously, the observable time τ0 is a more valuable
information in application. From the observation time
issue we see that it is not only an issue of existence
of the solution and steady state but also the quasi-
exponential decay issue of the system. How to deter-
mine the decay rate of the dynamic solution, however,
is hard work, which needs more detail spectral infor-
mation of the operator determined by the system. In
Ref.[11], Yuan and Xu investigated the spectrum of a
two unit deteriorating standby system with repair and
obtained batter results.

In the present paper, we mainly study the spec-
trum of the system operator, from which we can obtain
an answer for the observe time issue. In the present
paper, our model under consideration after certain as-
sumptions is the same as the one in [12] although it
has different background.

Redundancy plays an important role in enhancing
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system reliability. One of the commonly used form of
redundancy is the steady system. In this case, one or
more unit operate and the remaining redundant units
are kept in their mode.

There have been several publications on human
error analysis of redundant systems([13]-[17]). In
Ref. [13]-[17], failed system repair rates are assumed
to be constant, Ref. [12] consider the case when the
failed system repair rates are time-dependent. A math-
ematical model of a repairable parallel system with
standby units involving human and common-cause
failures is present in Ref. [12], Markov and supple-
mentary variable techniques are used to obtain the
general expressions of the model. Furthermore, in
Ref. [12], the general expression of the steady state
availability is obtained, the Laplace transform tech-
nique is used to obtain the time-dependent availability,
reliability and mean time to failure expressions.

The system of differential equations associated
with this model is the following([12]):

dP0(t)
dt = −h0P0(t) + µ1P1(t) + µ2P2(t)

+
5∑

j=4

∫ +∞
0 µj(y)Pj(y, t)dy,

dP1(t)
dt = 2λ1P0(t)− h1P1(t) + µ3P3(t),

dP2(t)
dt = λ2P0(t)− h2P2(t) + µ3P3(t),

dP3(t)
dt = 2λ1P1(t) + 2λ1P2(t)− h3P3(t),

∂P4(y,t)
∂t + ∂P4(y,t)

∂y = −µ4(y)P4(y, t),
∂P5(y,t)

∂t + ∂P5(y,t)
∂y = −µ5(y)P5(y, t),

(1)

with the boundary conditions and initial values
P4(0, t) = λ1P3(t),

P5(0, t) =
3∑

i=0
λciPi(t);

P0(0) = 1, Pi(0) = 0, i = 1, 2, 3,
Pj(0, t) = 0, j = 4, 5,

(2)

where h0 = 2λ1+λc0+λ2, h1 = 2λ1+µ1+λc1, h2 =
2λ1 + µ2 + λc2, h3 = λ1 + 2µ3 + λc3.

The symbols in equations have the following
meaning:

λ1: constant failure rate of a unit;
λ2: constant failure rate of switching mechanism

or standby itself;
µ1: constant repair rate when one of the parallel

units is disabled;
µ2: constant repair rate for the switching mecha-

nism or the standby itself;;
µ3: constant repair rate when two units have been

disabled;
µj(y): time-dependent system repair rate when

the system is in state j and has an elapsed repair time
of y, for j = 4, 5;

λc0 : constant critical common-cause failure rate;
λc1 : constant common-cause failure rate of the

system when one of the parallel units has failed;
λc2 : constant common-cause failure rate of the

system when switching mechanism or standby itself
is disabled;

λc3 : constant common-cause failure rate when
two units have failed;

Pi(t) : the probability that the system is in state i
at time t, for i = 0, 1, 2, 3;

Pj(y, t) : the probability that the failed system
is in state j and has an elapse repair time of y, for
j = 4, 5.

In Ref.[18], Hu has investigated the well-
posedness and the asymptotic stability of system
(1)(2). The rest of this paper is organized as follows.
In section 2, we formulate the problem into a suitable
Banach space. In section 3, we carry out a detailed
spectral analysis of the system operator. In section
4, based on the spectral analysis and C0 semigroup
theory, we prove the linear stability and the exponen-
tial stability of system. In section 5, we get that finite
expansion of the solution corresponding to its eigen-
vector and its dynamic solutions converges exponen-
tially to the stead-state solution. In section 6, we de-
rive some reliability indices of the system.

2 Formulation of the system
In the following, we denote by R the real number set,
R+ the non-negative real number set. Let X = R4 ×
(L1(R+))2 equipped the norm

∥ P ∥= |P0|+|P1|+|P2|+|P3|+∥P4(y)∥1+∥P5(y)∥1

for (P0, P1, P2, P3, P4(y), P5(y)) ∈ X. It is easily to
see that X is a Banach space.

Before we define the system operator, we make
the following assumptions:

(1) The general distributions

Aj(y) = 1− e−
∫ y
0 µj(s)ds, j = 4, 5, (3)

where µj(y) are nonnegative and local integrable on
[0,+∞), and

sup
y≥0

µj(y) < +∞, j = 4, 5. (4)

(2) The functions µj(y) satisfy∫ +∞

0
µj(y)dy = +∞, j = 4, 5. (5)

WSEAS TRANSACTIONS on MATHEMATICS Wenlong Wang, Zhiying Li

E-ISSN: 2224-2880 830 Issue 8, Volume 12, August 2013



We define the operator A by

A



P0

P1

P2

P3

P4(y)
P5(y)


=



−h0P0 + µ1P1 + µ2P2

+
5∑

j=4

∫ +∞
0 µj(y)Pj(y)dy

2λ1P0 − h1P1 + µ3P3

λ2P0 − h2P2 + µ3P3

2λ1P1 + 2λ1P2 − h3P3

−P ′
4(y)− µ4(y)P4(y)

−P ′
5(y)− µ5(y)P5(y)


(6)

with domain

D(A) = {(P0, P1, P2, P3, P4(y), P5(y)) ∈ X :

P
′
j (y), µj(y)Pj(y) ∈ L1(R+), Pj(y)

is an absolutly continuous function, j = 4, 5;

P4(0) = λ1P3, P5(0) =
3∑

i=0

λciPi}.

Then the equations system (1)(2) can be rewritten as
an abstract Cauchy problem in X:{

dP (t)
dt = AP (t), t > 0

P (0) = P̃0
(7)

whereP (t) = (P0(t), P1(t), P2(t), P3(t), P4(t), P5(t)),

P̃0 = (1, 0, 0, 0, 0, 0).
In Ref.[18] Hu has obtained the following results.

Theorem 1 (1) γ0 = 0 is a simple eigenvalue of A
and there exists a corresponding positive eigenvector;
(2) The operator A generates a positive C0 contrac-
tive semigroup on X .

3 Spectral analysis of A
In this section we shall carry out a spectral analysis of
A. In what follows we always regard X as a complex
Banach space.

Let z ∈ C, for any

P = (P0, P1, P2, P3, P4(y), P5(y)),

F = (f0, f1, f2, f3, f4(y), f5(y)) ∈ X,

we consider the resolvent equation (zI − A)P = F.
That is

zP0 + h0P0 − µ1P1 − µ2P2

−
5∑

j=4

∫ +∞
0 µj(y)Pj(y)dy = f0,

zP1 − 2λ1P0 + h1P1 − µ3P3 = f1,
zP2 − λ2P0 + h2P2 − µ3P3 = f2,
zP3 − 2λ1P1 − 2λ1P2 + h3P3 = f3,
zP4(y) + P ′

4(y) + µ4(y)P4(y) = f4(y),
zP5(y) + P ′

5(y) + µ5(y)P5(y) = f5(y),

(8)

therefore we get
P4(y) = e−

∫ y
0 [z+µ4(s)]ds{P4(0)

+
∫ y
0 f4(r)e

∫ r
0 [z+µ4(s)ds]dr},

P5(y) = e−
∫ y
0 [z+µ5(s)]ds{P5(0)

+
∫ y
0 f5(r)e

∫ r
0 [z+µ5(s)ds]dr}.

(9)

In order that Pj(y) ∈ L1(R+), j = 4, 5, it must hold
that ∫ y

0
fj(r)e

−
∫ y
r [z+µj(s)ds]dr ∈ L1(R+),

e−
∫ y
0 [z+µj(s)]ds ∈ L1(R+), j = 4, 5.

These imply that z must satisfy conditions

sup
r≥0

∫ +∞

r
e−

∫ y
r [ℜz+µj(s)]dsdy < +∞, j = 4, 5.

Thus we define non-negative real numbers αj and α
as follows

αj = sup
η≥0,r≥0

∫ +∞

0
eηy−

∫ y
0 µj(s+r)dsdy, (10)

α = min{αj < +∞, j = 4, 5}. (11)

Obviously, if η < αj , then the integral for any r ≥ 0,∫ +∞

r
e−

∫ y
r [µj(s)−η]dsdy

=

∫ +∞

0
e−

∫ y
0 [µj(s+r)−η]dsdy < +∞,

j = 4, 5, while η > αj ,∫ +∞

r
e−

∫ y
r [µj(s)−η]dsdy = +∞, j = 4, 5.

Note that real number αj(j = 4, 5) are the measure of
essential repair rate of the system.

Obviously, if ℜz < −α, then at least one of
P4(y), P5(y) given in (9) is not in L1(R+), therefore,
{z ∈ C : ℜz < −α} ⊂ σ(A).

Without loss of generality we can assume that the
functions e−

∫ y
0 [µj(s+r)−αj ]ds(j = 4, 5) are uniformly

bounded in (y, r). Set{
Nj = sup

y,r≥0
e−

∫ y
0 [µj(s+r)−αj ]ds, j = 4, 5,

N = max{N4, N5},
(12)

when ℜz > −α, we have the following estimates∫ +∞

0
|Pj(y)|dy
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≤ |Pj(0)|
∫ +∞

0
e−

∫ y
0 [ℜz+µj(s)]dsdy

+

∫ +∞

0
dy

∫ y

0
|fj(r)|e−

∫ y
r [ℜz+µj(s)]dsdr

≤ |Pj(0)|
ℜz + α

+

∫ +∞

0
|fj(r)|dr

∫ +∞

r
e−(y−r)(ℜz+α)dy

≤ |Pj(0)|+ ∥fj∥1
ℜz + α

,

so we have Pj(y) ∈ L1(R+), j = 4, 5.
Note that these functions in (9) are the formal

solution of the differential equations in (8). Substi-
tuting them into (8) and the boundary conditions (2)
lead to algebraic equations with unknown variations
P0, P1, P2, P3, P4(0), P5(0):

(z + h0)P0 − µ1P1 − µ2P2 − P4(0)[1− zG4(z)]
−P5(0)[1− zG5(z)] = F0,
zP1 − 2λ1P0 + h1P1 − µ3P3 = f1,
zP2 − λ2P0 + h2P2 − µ3P3 = f2,
zP3 − 2λ1P1 − 2λ1P2 + h3P3 = f3,
λ1P3 − P4(0) = 0,
λc0P0 + λc1P1 + λc2P2 + λc3P3 − P5(0) = 0.

Eliminating P4(0), P5(0) from above equations yield

[z + h0 + λc0zG5(z)− λc0]P0

+[λc1zG5(z)− µ1 − λc1]P1

+[λc2zG5(z)− µ2 − λc2]P2

+[λ1zG4(z) + λc3zG5(z)
−λ1 − λc3]P3 = F0,
zP1 − 2λ1P0 + h1P1 − µ3P3 = f1,
zP2 − λ2P0 + h2P2 − µ3P3 = f2,
zP3 − 2λ1P1 − 2λ1P2 + h3P3 = f3,

(13)

where

Gj(z) =

∫ +∞

0
e−

∫ y
0 [z+µj(s)]dsdy, (14)

j = 4, 5, and the inhomogeneous term F0 is

F0 = f0 + F4(z) + F5(z),

where

Fj(z) =

∫ ∞

0
µj(y)dy

∫ y

0
fj(r)e

−
∫ y
r [z+µj(s)]dsdr,

j = 4, 5. A direct calculation gives the determinant of
the coefficient matrix of (13)

D(z) = [z + λc0zG5(z) + h0 − λc0]d11(z)

+[λc1zG5(z)− λc1 − µ1]d12(z)

+[λc2zG5(z)− λc2 − µ2]d13(z)

+[λ1zG4(z) + λc3zG5(z)− λ1 − λc3]d14(z),

where dij(z)(i, j = 1, 2, 3, 4) are the algebraic cofac-
tor of D(z).

If z1 ∈ C such that D(z1) ̸= 0, solving the alge-
braic equations (13) we can get

P
(z1)
0 = 1

D(z1)
[d11(z1)F0

+d21(z1)f1 + d31(z1)f2 + d41(z1)f3],

P
(z1)
1 = 1

D(z1)
[d12(z1)F0

+d22(z1)f1 + d32(z1)f2 + d42(z1)f3],

P
(z1)
2 = 1

D(z1)
[d13(z1)F0

+d23(z1)f1 + d33(z1)f2 + d43(z1)f3],

P
(z1)
3 = 1

D(z1)
[d14(z1)F0

+d24(z1)f1 + d34(z1)f2 + d44(z1)f3].

(15)

From boundary conditions (2) we can get

P
(z1)
4 (0) = λ1

D(z1)
[d14(z1)F0

+d24(z1)f1 + d34(z1)f2 + d44(z1)f3],

P
(z1)
5 (0) =

3∑
j=0

λcj

D(z1)
[d1,j+1(z1)F0

+d2,j+1(z1)f1 + d3,j+1(z1)f2
+d4,j+1(z1)f3].

(16)

According to (9) we have
P

(z1)
4 (y) = e−

∫ y
0 [z1+µ4(s)]ds{P (z1)

4 (0)

+
∫ y
0 f4(r)e

∫ r
0 [z1+µ4(s)ds]dr},

P
(z1)
5 (y) = e−

∫ y
0 [z1+µ5(s)]ds{P (z1)

5 (0)

+
∫ y
0 f5(r)e

∫ r
0 [z1+µ5(s)]dsdr}.

(17)

Thus we obtain unique a solution of (8) in X whose
entries are determinant by (15) and (17). Therefore
z1 ∈ ρ(A).

For z0 ∈ C with ℜz0 > −α, the functionsG4(z0)
andG5(z0) defined by (14) have meaning. IfD(z0) =
0, the homogeneous algebraic equations

(z + h0)P0 − µ1P1 − [1− zG4(z)]P4(0)
−[1− zG5(z)]P5(0)− µ2P2 = 0,
zP1 − 2λ1P0 + h1P1 − µ3P3 = 0,
zP2 − λ2P0 + h2P2 − µ3P3 = 0,
zP3 − 2λ1P1 − 2λ1P2 + h3P3 = 0,
λ1P3 − P4(0) = 0,
λc0P0 + λc1P1 + λc2P2

+λc3P3 − P5(0) = 0,

(18)
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have a nonzero solution of the form

P
(z0)
0 = (z0 + h1){2λ1µ3[λ2(z0 + h1)

+2λ1(z0 + h2)]− (z0 + h2)},
P

(z0)
1 = −2λ1{(z0 + h2)− [λ2(z0 + h1)

+2λ1(z0 + h2)][(2λ1 − λ2)µ3]},
P

(z0)
2 = λ2(z0 + h1)[2λ1(λ2 − 2λ1)µ3

−λ2(z0 + h1)(z0 + h3)],

P
(z0)
3 = −2λ1λ2(z0 + h1)[λ2(z0 + h1)

+2λ1(z0 + h2)],

P
(z0)
4 (0) = λ1P

(z0)
3 ,

P
(z0)
5 (0) = λc0P

(z0)
0 + λc1P

(z0)
1

+λc2P
(z0)
2 + λc3P

(z0)
3 .

(19)

Remark: Let a = −2λ1λ2, b = 2λ1(z0 + h2), c =
−2λ1µ3, d = λ2(z0 + h1),e = −λ2µ3, f = −2λ1,
g = z0 + h3, then

A =

 a 0 b c
a d 0 e
0 f f g

→

 r 0 0 d[cf(b+ d)− b]
0 r 0 a[b+ f(b+ d)(e− c)]
0 0 r ad[dg − f(e− c)]


where r = adf(b+ d).

Using (13) with f4(r) = 0 and f5(r) = 0, we can
show that the functions

P
(z0)
0 = (z0 + h1){2λ1µ3[λ2(z0 + h1)

+2λ1(z0 + h2)]− (z0 + h2)},
P

(z0)
1 = −2λ1{(z0 + h2)− [λ2(z0 + h1)

+2λ1(z0 + h2)][(2λ1 − λ2)µ3]},
P

(z0)
2 = λ2(z0 + h1)[2λ1(λ2 − 2λ1)µ3

−λ2(z0 + h1)(z0 + h3)],

P
(z0)
3 = −2λ1λ2(z0 + h1)[λ2(z0 + h1)

+2λ1(z0 + h2)],

P
(z0)
4 (y) = P

(z0)
4 (0)e−

∫ y
0 [z0+µ4(s)]ds,

P
(z0)
5 (y) = P

(z0)
5 (0)e−

∫ y
0 [z0+µ5(s)]ds,

(20)

satisfy the homogeneous equations (8) with f0 =
f1 = f2 = f3 = f4(y) = f5(y) = 0 and bound-
ary conditions (2) and P (z0)

j (y) ∈ L1(R+)(j = 4, 5)
for ℜz0 > −α. Set

P (z0) = (P
(z0)
0 , P

(z0)
1 , P

(z0)
2 , P

(z0)
3 , P

(z0)
4 (y), P

(z0)
5 (y)),

we have P (z0) ∈ D(A) and AP (z0) = z0P
(z0). So z0

is an eigenvalue of A.
Summarizing the discussion above, we have

proved the following results.

Theorem 2 Let X and A be defined as before, and α
be defined by (10)(11). Then the following assertions
are true:
(1) {z ∈ C : ℜz < −α} ⊂ σ(A);
(2) {z ∈ C : ℜz > −α,D(z) ̸= 0} ⊂ ρ(A);
(3) {z ∈ C : ℜz > −α,D(z) = 0} consists of all
eigenvalues of A;
(4) σ(A) distributes symmetrically with respect to the
real axis.

Let z1 ∈ C with ℜz1 > −α and D(z1) ̸= 0, we
have z1 ∈ ρ(A). So the solution of (8) is given by P =
R(z1,A)F. According to the previous calculation we
have norm estimate

∥P∥X =

3∑
i=0

|P (z1)
i |+

5∑
j=4

∫ +∞

0
|Pj(y)|dy

≤
3∑

i=0

|P (z1)
i |+

5∑
j=4

|P (z1)
j (0)|

ℜz1 + α
+

5∑
j=4

∥fj∥1
ℜz1 + α

.

On the other hand,

3∑
i=0

|P (z1)
i |+

5∑
j=4

|P (z1)
j (0)|

ℜz1 + α

≤ (1 +
λc0

ℜz1 + α
)|P (z1)

0 |+ (1 +
λc1

ℜz1 + α
)|P (z1)

1 |

+ (1 +
λc2

ℜz1 + α
)|P (z1)

2 |+ (1 +
λ1 + λc3
ℜz1 + α

)|P (z1)
3 |

≤ N0

3∑
i=0

|P (z1)
i |,

where

N0 = max{1 + λc0
ℜz1 + α

, 1 +
λc1

ℜz1 + α
,

1 +
λc2

ℜz1 + α
, 1 +

λ1 + λc3
ℜz1 + α

}.

According to (15) it holds

3∑
i=0

|P (z1)
i |

≤
max
1≤j≤4

4∑
i=1

|dij(z1)|(|F0|+ |f1|+ |f2|+ |f3|)

|D(z1)|
.

Since

|Fj(z)|

≤
∫ +∞

0
µj(y)dy

∫ y

0
|fj(r)|e−

∫ y
r [ℜz+µj(s)]dsdr
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≤
∫ +∞

0
|fj(r)|dr∫ +∞

r
[ℜz + µj(y)]e

−
∫ y
r [ℜz+µj(s)]dsdy

+|ℜz|
∫ +∞

0
|fj(r)|dr

∫ +∞

r
e−

∫ y
r [ℜz+µj(s)]dsdy

≤ (1 +
|ℜz|

ℜz + α
)∥fj∥1, j = 4, 5,

while

|F0|+ |f1|+ |f2|+ |f3|
≤ |f0|+ |f1|+ |f2|+ |f3|+ |F4(z1)|+ |F5(z1)|
≤ |f0|+ |f1|+ |f2|+ |f3|

+(1 +
|ℜz1|

ℜz1 + α
)∥f4∥1 + (1 +

|ℜz1|
ℜz1 + α

)∥f5∥1

≤ (1 +
|ℜz1|

ℜz1 + α
)∥F∥X ,

so we have

3∑
i=0

|P (z1)
i |

≤
max
1≤j≤4

4∑
i=1

|dij(z1)|

|D(z1)|
(1 +

|ℜz1|
ℜz1 + α

)∥F∥X .

Since dij(z)(i, j = 1, 2, 3, 4) are the algebraic
cofactor of D(z), they all are at most 3-order poly-
nomial of z, then we can get that there is a positive
constant M such that

max
1≤j≤4

4∑
i=1

|dij(z1)| ≤M(|z1|3 +
1

ℜz1 + α
)

for any ℜz1 > −α, therefore we have

∥P∥X ≤
3∑

i=0

|P (z1)
i |+

5∑
j=4

|P (z1)
j (0)|

ℜz1 + α

+
5∑

j=4

∥fj∥1
ℜz1 + α

≤ N0

3∑
i=0

|P (z1)
i |+ ∥f4∥1 + ∥f5∥1

ℜz1 + α

≤ N0M

|D(z1)|
(|z1|3 +

1

ℜz1 + α
)

(1 +
|ℜz1|

ℜz1 + α
)∥F∥X +

1

ℜz1 + α
∥F∥X

≤ H(z1)∥F∥X ,

where

H(z1) =
N0M

|D(z1)|
(|z1|3 +

1

ℜz1 + α
)

(1 +
|ℜz1|

Rez1 + α
) +

1

ℜz1 + α
.

Since D(z) is analysis in the half plane ℜz >
−α, we have

lim
|ℑz|→+∞

|z|4 + h0h1h2h3
D(z)

= 1,

and the limit is uniformly in the region ℜz+α ≥ δ >
0. So the term 1

|D(z1)|(|z1|
3 + 1

ℜz1+α) is bounded as
|ℑz1| → +∞ with ℜz1 + α ≥ δ > 0. Thus we can
define the positive number

M(ℜz1) =
|D(z1)|

|z1|4 + h0h1h2h3
(ℜz1 + α)H(z1).

Obviously, when ℜz1 + α ≥ δ > 0,M(ℜz1) is uni-
formly bounded. In addition, A is a dissipative oper-
ator in X([18]), we also have ∥R(z1,A)∥ ≤ (ℜz1)−1

as ℜz1 > 0. So far we have proved the following re-
sult.

Theorem 3 Let D(z) be defined as before, then for
any ℜz > −α,D(z) ̸= 0, there exists a nonnegative
function M(ℜz) such that

∥R(z,A)∥ ≤ (|z|4 + h0h1h2h3)M(ℜz)
|D(z)|(ℜz + α)

.

In particular, when ℜz > 0, it holds that

∥R(z,A)∥ ≤ (ℜz)−1.

As a consequence of Theorem 3, we have the fol-
lowing corollary thank to the semigroup theory([19]).

Corollary 4 A generates a C0 semigroup on X of
contraction and the system (7) is well-posed in X.

Theorem 5 If the functions µj(y)(j = 4, 5) satisfy
conditions

sup
r≥0

∫ +∞

r
e−

∫ y
r µj(s)dsdy < +∞, (21)

j = 4, 5, then {z : ℜz = 0,ℑz ̸= 0} ⊂ ρ(A).

Proof: For any z = ib, b ∈ R, b ̸= 0, the matrix ∆ of
coefficients of (18) is

∆(ib) =



ib+ h0 −µ1 −µ2 0
−2λ1 ib+ h1 0 −µ3
−λ2 0 ib+ h2 −µ3
0 −2λ1 −2λ1 ib+ h2
0 0 0 −λ1

−λc0 −λc1 −λc2 −λc3
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ibG4(ib)− 1 ibG5(ib)− 1
0 0
0 0
0 0
1 0
0 1

 .

Since h0 = 2λ1 + λc0 + λ2, h1 = 2λ1 + µ1 + λc1,
h2 = 2λ1 + µ2 + λc2, h3 = λ1 + 2µ3 + λc3,
|ibG4(ib) − 1| < 1, |ibG5(ib) − 1| < 1, then ∆(ib)
is a strictly diagonal-dominant matrix about column,
which implies det△(ib) ̸= 0. Therefore, ib is not
the eigenvalue of A. In this case, the equation (18)
has uniquely a solution P (ib)

0 , P
(ib)
1 , P

(ib)
2 , P

(ib)
3 . Un-

der conditions (21), we can verify that the func-
tions P (ib)

4 (y), P
(ib)
5 (y)) defined by (17) with z1 =

ib(b ̸= 0) are in L1(R+), so the resolvent equation
(ibI − A)P = F has a uniquely solution in D(A).
Therefore

{z : ℜz = 0,ℑz ̸= 0} ⊂ ρ(A).

�

Theorem 6 Let α be defined as (10)(11). If α > 0,
then σ(A) has the following properties:
(1) For any δ > 0, there are at most finitely many
eigenvalues of A in the region {z ∈ C : ℜz+α ≥ δ}.
(2) There exists a constant ε > 0, such that the region
{z ∈ C : ℜz > −ε} has only one eigenvalue γ0 = 0.

Proof: In the half plane S0 = {z : ℜz > −α}
we have proved that there are eigenvalues of A only,
and z is a eigenvalue of A if and only if D(z) = 0.
When α > 0, there is only one zero of D(z) on the
imaginary axis according to Theorem 5. We consider
the zero of D(z) in the region G = {z : 0 > ℜz >
−α+ δ}. Observing that the functions

hj(z) =

∫ +∞

0
µj(y)e

−
∫ y
0 [z+µj(s)]dsdy(j = 4, 5)

are analysis in the region. The Riemann Lemma as-
serts that

lim
|ℑz|→+∞

hj(z) = 0, j = 4, 5.

Therefore

lim
|ℑz|→+∞

D(z)

z4
= 1

is uniformly in the region G. So D(z) has at most
finite zeros in G. So A has at most finite eigenvalue in
G.

LetD0(z) =
D(z)
z , then z ̸= 0 is a zero ofD(z) if

and only if it is that of D0(z). Since D0(z) = D0(z),

its zero are symmetrically with respect to the real
axis. Note that α > 0 implies D0(ib) ̸= 0, b ∈ R.
Let the zeros of D0(z) in the region G be zk(k =
1, 2, . . . ,m), we can set

ε = min
1≤k≤m

|ℜzk|.

There is no zero of D0(z) as ℜz > −ε. Hence there
is only one eigenvalue γ0 = 0 of A in S0. �

Definition 7 ([20]) Let λ0 be a eigenvalue of A, we
call λ0 a dominant eigenvalue if λ0 is a simple eigen-
value that is greater than the real part of any other
point of the spectrum, and if the eigenfunction associ-
ated with λ0 is positive; we call λ0 strictly dominant
if it is dominant and if there exists an ε > 0 such that
the real part of any other point of spectrum is less than
λ0 − ε.

From Theorem 1 and Theorem 6 we have the fol-
lowing result.

Theorem 8 If α > 0, then γ0 = 0 is a strictly domi-
nant eigenvalue of A.

4 Analysis of stability
Firstly, from [18] we known that γ0 = 0 is a simple
eigenvalue of A. On the other hand, from discussion
in the above section, we can get that the corresponding
positive eigenvector is

P̂0 =
1

Z
(P

(0)
0 , P

(0)
1 , P

(0)
2 , P

(0)
3 , P

(0)
4 (y), P

(0)
5 (y)),

where

P
(0)
0 = h1[2λ1µ3(λ2h1 + 2λ1h2)− h2],

P
(0)
1 = 2λ1[(λ2h1 + 2λ1h2)

(2λ1 − λ2)µ3 − h2],

P
(0)
2 = λ2h1[2λ1(λ2 − 2λ1)µ3 − λ2h1h3],

P
(0)
3 = 2λ1λ2h1(λ2h1 + 2λ1h2),

P
(0)
4 (y) = P

(0)
4 (0)e−

∫ y
0 µ4(s)ds,

P
(0)
5 (y) = P

(0)
5 (0)e−

∫ y
0 µ5(s)ds,

(22)
and

Z = h1[2λ1µ3(λ2h1 + 2λ1h2)− h2]
+2λ1[(λ2h1 + 2λ1h2)(2λ1 − λ2)µ3 − h2]
+λ2h1[2λ1(λ2 − 2λ1)µ3 − λ2h1h3]
+2λ1λ2h1(λ2h1 + 2λ1h2)
+2λ21λ2h1(λ2h1 + 2λ1h2)G4(0)
+{λc0h1[2λ1µ3(λ2h1 + 2λ1h2)− h2]
+2λc1λ1[(λ2h1 + 2λ1h2)(2λ1 − λ2)µ3 − h2]
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+λc2λ2h1[2λ1(λ2 − 2λ1)µ3 − λ2h1h3]
+2λc3λ1λ2h1(λ2h1 + 2λ1h2)}G5(0). (23)

Remark: The positive eigenvector P̂0 of A satisfies
∥P̂0∥X = 1. If we take Q0 = (1, 1, 1, 1, 1, 1), then
Q0 ∈ D(A∗) and A∗Q0 = 0, i.e. Q0 is an eigen-
vector of A∗, the corresponding eigenvalue is γ0 = 0.
Furthermore, we have

< P̂0, Q0 >=
1

Z
{

3∑
i=0

P
(0)
i +

5∑
j=4

∫ +∞

0
P

(0)
j (y)dy}

= ∥P̂0∥X = 1.

In what follows we shall study the linear stability
and the exponential stability of system (7).

Definition 9 ([21]) We say the solution of system (7)
is linearly stable, if there is a positive constant ε >
0, such that the nonzero spectrum of the operator A
satisfies

max{ℜz : z ∈ σ(A), z ̸= 0} ≤ −ε

and z = 0 is a simple eigenvalue of A.

From Theorem 1 and Theorem 6, we have the fol-
lowing result.

Theorem 10 If α > 0, then the solution of system (7)
is linearly stable.

Let A be a generator of the C0 semigroup T (t),
H0 be an initial value. The linear stability implies that

T (t)H0 = (H0, Q)P̂ + T1(t)H0,

lim
t→+∞

T1(t)H0 = 0,

where Q = (1, 1, 1, 1, 1, 1), and P̂ = ξP̃ is a positive
solution such that (P̂ , Q) = 1([18]). In general, linear
stability does not imply that there exist ω > 0,M >
0, such that

||T1(t)H0|| ≤Me−ωt, t ≥ 0, (24)

i.e., the exponential stability.
In the following part we shall study the exponen-

tial stability of system (7). Let λ ∈ ρ(A), the follow-
ing definitions can be referenced in [19]:

s(A) = sup{ℜλ | λ ∈ σ(A)},

ω1(T ) = lim
t→+∞

ln ||T (t)R(λ,A)||
t

,

s0(A) = sup

{
w > s(A) | sup

ℜλ=w
||R(λ,A)|| < +∞

}
,

ω0(T ) = lim
t→+∞

ln ||T (t)||
t

.

From [22, pp343, Theorem 5.1.9] and [23, pp119,
Corollary 4.2.7], we have the following Lemma.

Lemma 11 Let T (t) be a C0 semigroup on Banach
space X , and A be the generator, then

s(A) ≤ ω1(T ) < s0(A) ≤ ω0(T ).

Theorem 12 Let cj = inf{µj(y), y ∈ R+}, if c =
min{cj , j = 4, 5} > 0, then the solution of system
(7) is exponentially stable.

Proof: Since γ0 = 0 is an isolated eigenvalue of
A, let E0(A) be the corresponding spectral mapping,
then we have the following decomposition of X:

X = X0 + Y,X0 = E0(A)X,Y = (I − E0(A))X,

whereX0 is an eigen-subspace corresponding to γ0 =
0. It is well-known that Y also is a Banach space. Set
T1(t) = T (t)|Y ,A1 = A|Y , then A1 is a generator of
semigroup T1(t), and σ(A1) = σ(A)\{0}.

(1) s0(A1) ≤ 0.
Since γ0 = 0 is a resolvent point of A1, it is suf-

ficient to prove:

sup
|β|>δ>0

||R(iβ,A1)|| < +∞.

In fact, for z = iβ, similar to Theorem 2, for
any f = (f0, f1, f2, f3, f4(y), f5(y)) ∈ Y, ∥f∥ = 1,
the resolvent equation (iβI − A1)P = f has exactly
one solution P = (P0, P1, P2, P3, P4(y), P5(y)) ∈
D(A1), and

P0 =
I0(β)

β4+I(β)
, P1 =

I1(β)
β4+I(β)

,

P2 =
I2(β)

β4+I(β)
, P3 =

I3(β)
β4+I(β)

,

Pj(y) = e−
∫ y
0 [iβ+µj(u)]du{Pj(0)

+
∫ y
0 fj(r)e

∫ r
0 [iβ+µj(u)]dudr}, j = 4, 5,

(25)

where I(β), I0(β), I1(β), I2(β) and I3(β) all are 3-
order polynomial of β, then there exists a τ > 0, such
that

sup
z=iβ,|β|>δ>0

|Pi| ≤ τ, i = 0, 1, 2, 3.

Observing

|Fj(iβ)| ≤
∫ +∞

0
|µj(y)e−

∫ y
0 [iβ+µj(u)]du|dy = 1,

and

|Gj(iβ)| = |
∫ +∞
0 µj(y)e

−
∫ y
0 [iβ+µj(u)]dudy∫ y

0 fj(r)e
∫ r
0 [iβ+µj(u)]dudr|

≤
∫ +∞
0 |fj(r)|e

∫ r
0 µj(u)dudr

∫∞
r µj(y)e

−
∫ y
0 µj(u)dudy

=
∫ +∞
0 |fj(r)|dr = ||fj ||1, j = 4, 5,
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we have ∫ +∞

0
|Pj(y)|dy

≤
∫ +∞

0
|Pj(0)|e−

∫ y
0 µj(u)dudy

+

∫ +∞

0
dy

∫ y

0
|fj(r)|e−

∫ y
r µj(u)dudr

≤ |Pj(0)|
∫ +∞

0
e−ycdy

+

∫ +∞

0
dy

∫ y

0
|fj(r)|e−(y−r)cdr

≤ |Pj(0)|
∫ +∞

0
e−ycdy

+

∫ +∞

0
|fj(r)|dr

∫ +∞

r
e−(y−r)cdy

=
|Pj(0)|
c

+
||fj ||1
c

, j = 4, 5,

therefore

||R(iβ,A1)f || = ||P ||X
= |P0|+ |P1|+ |P2|+ |P3|

+

5∑
j=4

∫ +∞

0
|Pj(y)|dy

≤ (4τ +
2

c
+
λ1τ

c
+
τ

c

3∑
i=0

λci)∥f∥.

So there exists an M0 > 0, such that

lim
|β|→+∞

||R(iβ,A1)|| ≤M0.

This means

sup
|β|>δ>0

||R(iβ,A1)|| < +∞,

i.e., s0(A1) ≤ 0.
(2) The solution of system (7) is exponentially

stable.
According to Lemma 11, we have ω1(T1) <

s0(A1) ≤ 0. Thus we can choose ε > 0, such that
ω1(T1) + ε < 0. Using the definition of ω1(T1), there
exists an M > 0, such that

||T1(t)R(z,A1)|| ≤Me[ω1(T1)+ε]t, t ≥ 0,

i.e.,

||T1(t)g|| ≤Me[ω1(T1)+ε]t||(zI −A1)g|| (26)

for g ∈ D(A1).Hence the solution P (t) of system (7)
can be written

P (t) = T (t)P̃ = (P̃ , Q)P̂ + T1(t)P̃

= P̂ + T1(t)P̃ ∈ D(A), t > 0.

This means T1(t)P̃ ∈ D(A). Set g = T1(s)P̃ , s > 0,
then g ∈ D(A1). From (26) we get

||T1(t+ s)P̃ || = ||T1(t)g||

≤Me−|ω1(T1)+ε|t||(zI −A1)g||, t > 0.

Therefore

||T (t+ s)P̃ − P̂ || = ||T1(t)P̃ ||

≤Me−|ω1(T1)+ε|t||(zI −A1)g||, t > 0,

i.e., the system (7) is exponentially stable. �

5 Finite expansion of solution
From now on we suppose that α > 0. According to
results of Theorem 6, for any small δ > 0, the region
{z : 0 ≥ ℜz ≥ −α + δ} has only finite many eigen-
values of A.Without loss of generality we assume that
{z : ℜz = −α+ δ} ∈ ρ(A).

Let T (t) be a C0 semigroup on Banach space X ,
and A be the generator, then for ω > 0 it holds that

T (t)P =
1

2πi

∫ ω+i∞

ω−i∞
eztR(z,A)Pdz, P ∈ X.

For sufficient large M, let

SM (t)P =
1

2πi

∫ −α+δ+iM

−α+δ−iM
eztR(z,A)Pdz,

then we have

1

2πi

∫ α+iM

α−iM
eztR(z,A)Pdz

=
∑

zi∈σp(A),ℜzi≥−α+δ

1

2πi

∫
|z−zi|=ε

eztR(z,A)Pdz

+
1

2πi

∫ ω

−α+δ
e(iM+s)tR(iM + s,A)Pds

− 1

2πi

∫ ω

−α+δ
e(−iM+s)tR(−iM+s,A)Pds+SM (t)P.

Using the estimates in Theorem 3, we can get

lim
M→+∞

1

2πi

∫ ω

−α+δ
e(iM+s)tR(iM + s,A)Pds = 0,

WSEAS TRANSACTIONS on MATHEMATICS Wenlong Wang, Zhiying Li

E-ISSN: 2224-2880 837 Issue 8, Volume 12, August 2013



lim
M→+∞

1

2πi

∫ ω

−α+δ
e(−iM+s)tR(−iM+s,A)Pds = 0.

Therefore we have

T (t)P =
∑

zi∈σp(A),ℜzi≥−α+δ

T (t)E(zi,A)P +S(t)P,

where
S(t)P = lim

M→+∞
SM (t)P

=
1

2πi

∫ −α+δ+i∞

−α+δ−i∞
eztR(z,A)Pdz.

Obviously this presentation implies that there exists a
constant C > 0 such that

∥S(t)P∥ ≤ Ce(−α+δ)t∥P∥, P ∈ X.

Therefore we have the following result.

Theorem 13 Suppose that, for δ > 0 small enough,
the eigenvalues of A in the region {z : ℜz > −α+ δ}
are given by 0, z1, z1, z2, z2, . . . , zm, zm with ℜzj ≥
ℜzj+1. Then we have the finite expansion of the semi-
group T (t) :

T (t)P =< P,Q > P̂0

+

m∑
j=1

T (t)[E(zj ,A) + E(zj ,A)]P + S(t)P,

where Q = (1, 1, 1, 1, 1, 1), and

P̂0 =
1

Z
(P

(0)
0 , P

(0)
1 , P

(0)
2 , P

(0)
3 , P

(0)
4 (y), P

(0)
5 (y)),

whose entries determinant by (22)(23).

From Section 4, we see that P̂0 is the stead-state
solution with ∥P̂0∥ = 1. Du to ℜzj < 0, from Theo-
rem 13 we see that for any P ∈ X,

lim
t→+∞

T (t)P =< P,Q > P̂0.

In particular, we have the following estimate for its
convergence.

Corollary 14 Suppose that α > 0 and −ω1 < ℜz1 <
0, then for any initial value P (0) we have

∥P (t)− < P (0), Q > P̂0∥ ≤ 2e−ω1t∥P (0)∥, t ≥ 0,

where P (t) = T (t)P (0).

Proof: Since the Riesz spectral project corresponding
to γ0 = 0 is given by

E(γ0,A)F =
1

2πi

∫
|z|=ε

eztR(z,A)Fdz

=< F,Q > P̂0

for any F ∈ X. This leads to

∥E(γ0,A)∥ = ∥Q∥∥P̂0∥ = 1.

Since T (t) is a semigroup in the subspace
(I − E(γ0,A))X, we have

∥P (t)− < P (0), Q > P̂0∥

= ∥T (t)(I −E(γ0,A))P (0)∥
≤ 2e−ω1t∥P (0)∥.

The desired result follows. �
Remark: In Corollary 14, usually we have ω1 ̸=
ℜz1. If z1 is an eigenvalue of A without the second
order root vector, then we can take ω1 = ℜz1.

6 Some indices of the system
Quasi-exponential decaying of the system means that
one can see the stead state of system in a relatively
shot period. For the system under consideration, the
dynamic solution of system is given by

P (t) = T (t)P (0)
= (P0(t), P1(t), P2(t), P3(t), P4(y, t), P5(y, t)),

with initial value P (0) = (1, 0, 0, 0, 0, 0) and the
stead state of system is < P (0), Q > P̂0 = P̂0, where

P̂0 =
1

Z
(P

(0)
0 , P

(0)
1 , P

(0)
2 , P

(0)
3 , P

(0)
4 (y), P

(0)
5 (y))

and P̂0 defined by (22)(23).
For a system S, whose dynamic solution is P (t)

with initial data ∥P0∥ = 1 and the stead state is P̂0, if
there is a time τ0 such that when t > τ0 it holds that
∥P (t)− P0∥ ≤ 0.25, then we say that we can see the
stead state of the system at τ0.

According to Corollary 14, we have estimate

∥P (t)− P̂0∥ ≤ 2e−ω1t.

Obviously, for τ0 = 3ln2
ω1
, when t > τ0 we have

∥P (t)− P̂0∥ ≤ 0.25.

Therefore we can see the stead state at τ0 = 3ln2
ω1
.
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The instantaneous availability of the system is a
probability of the system in work, which is defined by

V (t) = P0(t) + P1(t) + P2(t) + P3(t).

Since
3∑

i=0

|Pi(t)− P
(0)
i | ≤ ∥P (t)− P̂0∥ ≤ 2e−ω1t,

where
P

(0)
0 + P

(0)
1 + P

(0)
2 + P

(0)
3

=
h1[2λ1µ3(λ2h1 + 2λ1h2)− h2]

Z

+
2λ1[(λ2h1 + 2λ1h2)(2λ1 − λ2)µ3 − h2]

Z

+
λ2h1[2λ1(λ2 − 2λ1)µ3 − λ2h1h3]

Z

+
2λ1λ2h1(λ2h1 + 2λ1h2)

Z
,

then for t > 3ln2
ω1
, we have

V (t) =
h1[2λ1µ3(λ2h1 + 2λ1h2)− h2]

Z

+
2λ1[(λ2h1 + 2λ1h2)(2λ1 − λ2)µ3 − h2]

Z

+
λ2h1[2λ1(λ2 − 2λ1)µ3 − λ2h1h3]

Z

+
2λ1λ2h1(λ2h1 + 2λ1h2)

Z
+O(t),

|O(t)| ≤ 0.25. Obviously, the probability of the sys-
tem failure is∫ +∞

0
P4(y, t)dy +

∫ +∞

0
P5(y, t)dy.

It has an estimate

1− V (t) = 1− h1[2λ1µ3(λ2h1 + 2λ1h2)− h2]

Z

+
2λ1[(λ2h1 + 2λ1h2)(2λ1 − λ2)µ3 − h2]

Z

+
λ2h1[2λ1(λ2 − 2λ1)µ3 − λ2h1h3]

Z

+
2λ1λ2h1(λ2h1 + 2λ1h2)

Z
± 0.25.

Note that the Z as (23) is a decrease function with
respect to the repair rates µ4(y), µ5(y). When the re-
pair rates are strength, the availability of the system
increases and hence the reliability of system is en-
hanced.
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